

Modeling and Simulation of System-of-Systems Timing Constraints
with UML-RT and OMNeT++

J. Bret Michael, Man-Tak Shing, Michael H. Miklaski and Joel D. Babbitt
Department of Computer Science

Naval Postgraduate School
833 Dyer Road

Monterey, CA 93943 USA
{bmichael, shing}@nps.edu, miklaskim@nimitz.navy.mil, joel.babbitt@us.army.mil

Abstract

There is a growing interest in using object-oriented analy-
sis and design techniques in conjunction with UML to de-
velop large complex systems. This paper presents an itera-
tive approach for studying the timing constraints of a sys-
tem-of-systems using models expressed in UML for Real-
time extension (UML-RT), which are then translated into
coarse-grained simulation models that are exercised using
the OMNeT++ simulation engine. The integration of the
UML-RT models with simulation models provides a seam-
less process for rapidly constructing executable prototypes
for the purpose of analyzing timing constraints and deriv-
ing system requirements from those constraints. The effec-
tiveness of the approach is demonstrated with a case study
of the sensor-netting capability of a missile defense system.

1 Introduction

There is a growing interest in using object oriented analysis
and design techniques in conjunction with the Unified
Modeling Language (UML) [6] to develop system-of-
systems. The object-oriented designs of these systems tend
to be very large and complex [1,2]. Feasible requirements
for large dynamic systems are difficult to formulate, under-
stand, and meet without extensive prototyping. Modeling
and simulation holds the key to the rapid construction and
evaluation of prototypes early in the development process.
We use an iterative process (Figure 1) that starts with Use
Case analysis to identify user needs—defined as high-level
system capabilities—and the construction of an object
model to capture essential information about the environ-
ment in which this system will operate. However, adopting
UML, we could not specify the architectural design with a
formal architectural language such as MetaH [12]. Instead,
in our approach we develop an object-oriented architecture
of the system using UML-RT [8]. We refine the internal
structures of the component systems using the Hierarchy

plus Input, Process, Output (HIPO) technique [3] until the
components are readily mapped to modules of the target
simulation written in OMNeT++ [11]. We use the simula-
tion to study the feasibility and correctness of the timing
requirements and apply the lessons learned to modify the
system architecture and timing constraints accordingly.

In comparison to other attempts to extend UML syntax to
support automatic generation of simulation code from de-
sign, such as in [7,10], our initial investigation leads us to
tentatively conclude that UML-RT is much better suited for
use in modeling complex system architectures. We demon-
strate later in the paper that there is a straight-forward map-
ping between a UML-RT architectural model and the corre-
sponding OMNeT++ simulation model, opening up the op-
portunity for automatic generation of simulation control
codes from UML-RT models.

The rest of the paper is organized as follows. Section 2 pro-
vides an introduction to UML-RT and Section 3 gives an
overview of the OMNeT++ system. Section 4 presents a
case study of the missile defense system to demonstrate the
use of UML-RT in system architecture specification and
their mappings to the OMNeT++ executable model. Section
5 presents a discussion of the approach.

Figure 1. The Iterative Prototyping Process

Use Case
Analysis

Domain Model
Construction

Requirements
Development

System
Architecture

Design

Simulation
Development

Architecture
Refinement

Simulation
Analysis

2 UML-RT

UML-RT is an extension of UML and is based on the con-
cepts underlying the ROOM language [9]—an architectural
definition language developed specifically for complex real-
time software systems. UML-RT provides three principal
constructs (capsules, ports, and connectors) for modeling
the structures of a real-time system. Capsules are special-
ized UML active objects for modeling self-contained com-
ponents of a system with the following two restrictions: (1)
capsule operations can only be called within the capsule and
(2) capsules can only communicate with other capsules
through special mechanisms called ports. Ports are objects
within a capsule that act as interfaces on the boundary of the
capsule. A capsule may have one or more ports through
which it is interconnected with other capsules via connec-
tors. Connectors represent communication channels through
which capsules communicate via the sending and receiving
of messages. Each port is associated with a protocol that
captures the semantics of the interactions between the port
and its counterpart on the opposite end of the connector.

Figure 2 shows a simple UML-RT model consisting of a set
of sensor capsules, a set of sensor fusion processor capsules
and a sensor net capsule. Each sensor capsule has three
ports. It uses one of the ports to communicate with its asso-
ciated sensor fusion processor capsule. Each sensor fusion
processor capsule has multiple ports for communication
with its associated sensors (as indicated by the multi-object
icon) and uses a single port to communicate with the sensor
net capsule. The “white-filled” icons on the sensor fusion
processor capsule indicate that the sensor fusion processor
capsule plays the “slave” role of a binary protocol when
communicating with its associated sensor capsules. A cap-
sule may contain collaborating sub-capsules, as shown Fig-
ure 3, and may have at most one state machine that specifies
the dynamic behavior of the capsule.

3 OMNeT++

OMNeT++, which stands for Objective Modular Network
Testbed in C++, is an object-oriented discrete-event simu-
lator primarily designed for the simulation of communica-
tion protocols, communication networks and traffic models,
and models of multiprocessor and distributed systems.
Similar to UML-RT, OMNeT++ provides three principal
constructs (modules, gates, and connections) for modeling
the structures of a target system. An OMNeT++ simulation
model consists of a set of modules communicating with
each other via the sending and receiving of messages. Mod-
ules can be nested hierarchically. The atomic modules are
called simple modules; they are coded in C++ and executed
as co-routines on top of the OMNeT++ simulation kernel.
Gates are the input and output interfaces of the modules.
Messages are sent out through output gates of the sending
module and arrive through input gates of the receiving
module. Input and output gates are linked together via con-
nections. Connections represent the communication chan-
nels and can be assigned properties such as propagation
delay, bit error rate and data rate.

Messages can contain arbitrarily complex data structures
and can be sent either directly to their destination via a con-
nection or through a series of connections (called route).
Figure 4 shows a simple OMNeT++ model consisting of
five modules: a missile (ICBM), a ground sensor (Ground-
Sensor), a satellite sensor (SatSensor), a sensor fusion proc-
essor (SFP), and the sensor net (SensorNet).

The OMNeT++ models are expressed in terms of a topol-
ogy description language NED (NEtwork Description). A
NED file may contain a set of import statements, a set of
channel definitions, a list of simple and compound module
declarations, and a network definition (Figure 5). Each
module can have parameters to customize module topology,
module behavior, and module communication. OMNeT++
provides a Graphical Network Editor (GNED) for viewing
and editing of NED files (Figure 6).

Figure 2. A UML-RT model

<<capsule>>

: Sensor Net

<<capsule>>

: Sensor

<<capsule>>

: Sensor Fusion
Processor

Figure 4. A OMNeT++ model

ICBM
in2

in1 out1
out2

Ground
Sensor

m_inm_out
out

in

SFP
s_in

in2 out2

s_out

in1
out1

Sat
Sensor

m_out

m_in
out in

Sensor
Net

out in

Figure 3. The internal view of the sensor capsule

<<capsule>>

: CueingCapsule

<<capsule>>

: OrientationCapsule

<<capsule>>

: TrackFormingCapsule

<<capsule>>

: SFPInterfaceCapsule

: Sensor

In addition to GNED, OMNeT++ also provides a compiler
(NEDC) to generate the simulation control code and a user-
interface from the NED files. The control code calls the
functions provided in the OMNeT++ simulation kernel li-
brary and allows the user to control the simulation execu-
tion either via a command-line (Cmdenv) or a graphical
user (Tkenv) interface. Data from the simulation executions

are saved as specially formatted text files which, after some
preprocessing using sed, awk or perl, can be read into math
packages such as Matlab or Octave, or imported into
spreadsheet programs. OMNeT++ also provides a vector-
plotting tool (Plove) for filtering (e.g., averaging, trunca-
tion, smoothing) the output data and displaying the results
as graphs.

4 Missile Defense System – A Case Study

In this section, we illustrate the iterative approach with a
hypothetical ballistic missile defense system (BMDS). The
BMDS is an integrated system-of-systems which provides a
layered defense that employs complementary sensors and
weapons to engage threat targets by land, sea, air, or space
in the boost, midcourse, and terminal phases of flight, and
incrementally deploying that capability. In parallel, sensor
suites and the battle management and command and control
(BMC2) software will be developed to form the backbone
of the BMDS.

4.1 Use Case Analysis

To understand the requirements and constraints of the pro-
posed system, we developed six UML use cases to identify
the external agents and systems that are involved in a typi-
cal missile-defense scenario and the necessary interactions
between these entities:

1. Detect Potential Threat Ballistic Missile - The goal of
this use case is to detect possible threat ballistic mis-
siles, and push the track data onto the sensor net.

2. Generate and Transmit a Local Track - This is a sub-
use case of 1. The goal of this use case is to have a sen-
sor generate a local track based on valid detection pa-
rameters of the sensor.

3. Cooperatively Track and Classify Threat Ballistic Mis-
siles - The goal of this use case is to identify and type-
classify the threat ballistic missiles, develop fire-quality
tracks for engagement solutions, and forward the target
track list to Weapons Net.

4. Cooperative Weapons Assignment - The goal of this
use case is to assign targets to weapons via cooperative
target bidding.

5. Engage Targets - The goal of this use case is to engage
threat ballistic missile.

6. Assess Kill - The goal of this use case is to determine
the kill status of the threat ballistic missile.

We then developed sequence diagrams based on the use
cases to identify the flow of events and messaging between
the external agents and the BMC2 system. Figure 7 shows
the sequence diagram for use cases 1 and 2, where the flow

//-----------------------
// file: missile.ned
//-----------------------

// modules definitions
simple ICBM
 gates:
 out: out1;
 out: out2;
 in: in1;
 in: in2;
endsimple

simple GroundSensor
 gates:
 •••
endsimple

simple SatSensor
 gates:
 •••
endsimple

simple SFP
 gates:
 •••
endsimple

simple SensorNet
 gates:
 •••
endsimple

// the Missile network model
module Missile
 parameters:
 data_rates : numeric,
 radar_size: numeric,
 fused_size: numeric,
 ir_size: numeric;
 submodules:
 ICBM: ICBM;
 display: "o=#ff0000;p=79,59;b=36,32";
 GroundSensor: GroundSensor;
 display: "p=75,220;i=router;b=32,32";
 SatSensor: SatSensor;
 display: "p=150,150;i=router;b=34,34";
 SFP: SFP;
 display: "p=323,221;i=pc;b=38,32";
 SensorNet: SensorNet;
 display: "o=#0000ff;p=323,53;b=38,32";
 connections:
 ICBM.out1 --> delay .5ms --> GroundSensor.m_in;
 ICBM.in1 <-- delay .5ms <-- GroundSensor.m_out;
 GroundSensor.out -->
 delay 250ms datarate data_rates --> SFP.in1;
 GroundSensor.in <--
 delay 250ms datarate data_rates <-- SFP.out1;
 ICBM.out2 --> delay 130ms --> SatSensor.m_in;
 ICBM.in2 <-- delay 0ms <-- SatSensor.m_out;
 SatSensor.out -->
 delay 500ms datarate 93000 --> SFP.in2;
 SatSensor.in <--
 delay 0ms datarate 93000 <-- SFP.out2;
 SensorNet.out --> delay 250ms --> SFP.s_in;
 SensorNet.in <-- delay 250ms <-- SFP.s_out;
 display: "p=10,10;b=405,265";
endmodule

// Instantiates a Missile network.
network UseCase1 : Missile
 parameters:
 radar_size = input(100000, "Size of Radar Track File"),
 fused_size = input(200000, "Size of Fused Track File"),
 ir_size = input(1000, "Size of IR Contact Report"),
 data_rates = input(1024000, "Radar to SensorNet Data Rate");
endnetwork

Figure 5. The Network Description file

Figure 6. The Graphical Network Editor

of events begins with the assumption that a ballistic missile
threat exists and that there is a sufficient amount of time to
conduct deliberate planning prior to the anticipated first
available launch window. In this instance the commanders,
via the BMC2 and Sensor Net, issue a warning in the form
of cueing messages for sensors to observe a specific region.
Once a missile is detected, the sensor commences continu-
ous tracking of the missile and forwards a cueing message
to the BMC2 and Sensor Net so that other sensors can de-
tect and track the missile.

We refer the readers to [4,5] for details of the use cases and
the rest of the sequence diagrams.

4.2 A Distributed BMC2 Architecture

The huge complexity, physically dispersed geography, and
distributed nature of global ballistic missile defense neces-
sitate a distributed approach to ballistic missile defense bat-
tle management. Based on the use cases, we developed the
top level of a distributed architecture shown in Figure 8,
along with the corresponding UML-RT model shown in
Figure 9.

The overarching BMC2 System will consist of a loosely
coupled set of regional BMC2 systems; geographically
separated networks interconnected much like the Internet.
The intent is to allow all participants to pull the information
from specific regions as desired, but also to ensure that
time-critical information can be pushed to those geographi-
cally collocated units that need it to effect destruction of a
threat missile or to hand-off the information to non-geo-
graphically collocated units as a missile transits from one
region to another.

Each regional BMC2 system consists of three major sub-
systems: a C2BMC node, a Sensor Net and a Weapons Net,

where the C2BMC node refers to the automation support
for the Command/Control, Battle Manager and Communi-
cation (C2BMC) functions, the Sensor Net refers to a dis-
tributed system that provides the sharing of track data
among Sensor Fusion Processors, Weapons Net, Weapon
Platforms and the C2BMC node, and the Weapons Net re-
fers to a distributed system for cooperative target assign-
ment.

We refined the internal structures of the Sensor capsule, the
Sensor Net capsule and the Sensor Fusion Processor cap-
sule using the HIPO technique. Figures 10 shows the inter-
nal structure of the Sensor Fusion Processor (SFP) capsule,
which consists of five sub-capsules (Sensor Interface, Track
Fusing, Collaborative Fusion, Track List and Sensor Net
Interface).

Figure 9. The UML-RT model for the BMC2 architecture

<<capsule>>
: Sensor

Net

<<capsule>>
: Sensor
Fusion

Processor

<<capsule>>
: Sensor

Controlling
Authority

<<capsule>>
: Competent

Authority

<<capsule>
: Weapons

Net

<<capsule>>
: C2BMC

<<capsule>>
: Remote

Sensor Net

<<capsule>>

: Sensor

<<capsule>>
: Weapon
Platform

<<capsule>>
: Weapon

Figure 8. A distributed BMC2 architecture

track data

WeaponWeapon Weapon

Weapon
Platform

Weapon
Platform

weapon
command

weapon
command

weapon
command

Weapon
Net

target bids
target list,
approved
weapons
assignments

Sensor Net
(Fused Local and Remote

Track Information)

C2BMC
node

revised
track data,

cueing
message

track data,
cueing

message

track data

Competent
Authority

cueing
message

proposed
weapons

assignments

target list,
approved
weapons
assignments

target bids

target list,
approved
weapons
assignments

Sensor
Controlling
Authority

cueing

message
Sensor
Fusion

Processor

cueing

message

track datatrack data

sensor command

sensor

command

track data

sensor

command

track

data

Sensor
Fusion

Processor

Sensor
Controlling
Authority

track data

cueing

message

sensor

command

track

data

Remote Sensor Net Remote Sensor Net

filtered
track
data

filtered
track

data

filtered
track

data

Regional
BMC2
System

:missile :BMC2 :SensorNet

:Sensor
Controlling
Authority

:Sensor
Fusion

Processor
:Sensor

CheckThreat()
cueingMessage()

cueingMessage()
sensorCommand()

search()

evaluate()
initialDetection()

cueingMessage()cueingMessage()

track()
developTrack()

updateTrack()

discriminate()

filter()

sendTrackData()

fuse()

sendTrackData()

* [repeat until sensor receives new command or when threat is eliminated]

Figure 7. The sequence diagram for use cases 1 and 2

The Sensor Interface capsule serves as the primary interface
to all assigned sensors. It sends all tracks to the Track Fus-
ing capsule if it is receiving data from more than one sen-
sor; otherwise, it passes the data directly to the Collabora-
tive Fusion capsule. The Track Fusing capsule takes multi-
ple tracks per target from the Sensor Interface capsule, cor-
relates or fuses them into one single track per target in real
time. It also performs track discrimination as a backup to
the sensor’s native discrimination capability to prevent
overload on the Sensor Net. The Collaborative Fusion cap-
sule takes fused or raw local tracks (one per target) and
fuses them with tracks received from other SFPs via the
Sensor Net. The Track List capsule is responsible for com-
piling and providing the internal list of tracks for the SFP
and preventing duplicates. It provides this data to both the
Track Fusing capsule and the Collaborative Fusion capsule,
and provides this information to other SFPs upon request
via the sensor net. It also serves as a repository for com-
mands received from the Sensor Net. The Sensor Net Inter-
face capsule is responsible for pushing tracks from the
Track List capsule to the Sensor Net and routing the incom-
ing tracks from other SFPs via the Sensor Net to the Col-
laborative Fusion Capsule. (Readers can refer to [5] for the
complete UML-RT models.)

4.3 The OMNeT++ simulation model the Sensor
Fusion Processor

In order to perform a systematic analysis of the BMDS tim-
ing constraints and requirements, we developed an OM-
NeT++ discrete event simulation of the Sensor Fusion
Processor (SFP) as a model for simulating the entire system,
using the UML-RT model as a template for incorporating
system requirements based on the documented artifacts.
The simulation is used to determine whether the require-
ments have been achieved, that the system operates within
acceptable parameters, and to discover any other possible
timing considerations and constraints.

As numerous sensors provide track data at asymmetric
rates, the SFP must discriminate, filter, and fuse the current
track data into a single track and forward that track out to
the Sensor Net. The SFP must also compare that track with
a track database to determine if it is to be used to update an
existing track or develop a new track. Additionally, devel-
oping a rough track classification requires a table look up,
data comparison, and association based on known paramet-
ric data.

The OMNeT++ simulation shown in Figure 11 was created
to identify potential bottlenecks at the Sensor Fusion Proc-
essor. It consists of twelve modules simulating the five sub-
capsules of the Sensor Fusion Processor interfacing with
two satellite Sensor capsules, four ground radar Sensor cap-
sules and the Sensor Net capsule. The internal structures of
these capsules are mapped to the C++ code of the corre-
sponding modules. Figure 12 shows the graphical user inter-
face for the simulation model shown in Figure 11.

4.4 Simulation Results

A parametric (i.e., sensitivity) analysis involving multiple
simulation runs was conducted to determine what were the
most significant timing constraints on the system and at

Figure 12. The Graphical User Interface

Figure 10. The internal structure of the
Sensor Fusion Processor capsule

<<capsule>>

SFP1TFC: TrackFusingCapsule

<<capsule>>

SFP1SIC: SensorInterfaceCapsule

SFP1: SensorFusionProcessor

<<capsule>>

SFP1CFC: CollaborativeFusionCapsule

<<capsule>>

SFP1TLC: TrackListCapsule

<<capsule>>

SFP1SNIC: SensorNetInterfaceCapsule

(track data)

(track
data)

<<capsule>>
: SensorNet

<<capsule>>

SFP1TFC: TrackFusingCapsule

<<capsule>>

SFP1SIC: SensorInterfaceCapsule

<<capsule>>

SFP1CFC: CollaborativeFusionCapsule

<<capsule>>

SFP1TLC: TrackListCapsule

<<capsule>>

SFP1SNIC: SensorNetInterfaceCapsule

<<capsule>>
IRSensor[0]

: Sensor

<<capsule>>
IRSensor[1]

: Sensor

<<capsule>>
RadarSensor[0]

: Sensor

<<capsule>>
RadarSensor[1]

: Sensor

<<capsule>>
RadarSensor[2]

: Sensor

<<capsule>>
RadarSensor[3]

: Sensor

Figure 11. The OMNeT++ Model the Sensor Fusion Processor

what point they became critical. A methodical approach was
utilized in the process of obtaining data where one input
value was varied and the others remained constant to see
how that one variable impacted the system. For data input
values (data rates, track message sizes, sensor update delay,
number of sensors, collaborative fusion requests, module
processing time, track list access time, master track list
broadcast times and track fusion time), we utilized commer-
cial data-transmission rates and approximate system clock-
speed values for internal timing. In doing so we abstracted
the data points and precluded any implication of existing or
developmental systems, while still obtaining valid research
data. Tables 1 through 12 summarize the results of the
simulation runs.

Table 2. Varying Track Message Sizes

Table 3. Varying Ground-based Radar Update Delay

Table 1. Varying Data Rate

Table 4. Varying Space-based IR Update Delay

Table 5. Varying Number of Ground-based Radar Sensors

Table 6. Varying Number of Space-based IR Sensors

Table 7. Varying Collaborative Fusion Requests

Table 8. Varying Module Processing Time

Table 9. Varying Track List Access Time

Table 10. Varying Time to Perform Track Fusion

The most significant timing issue that was obtained through
multiple iterations of the simulation was that as the track
load increased, whether it was from large numbers of tracks
being reported, moderate numbers of tracks being reported
by large numbers of sensors, or when the sensors increased
their update rates, the Track List capsule (LTC) which is
responsible for maintaining and broadcasting the update
track list would become saturated, thus increasing the time
to transmit track data. This is evidenced by corresponding
increases of both the TLC’s utilization and average time to
broadcast tracks on the Sensor Net with an increase in the
number of tracks reported or sensors updating.

We observed that track message size and data throughput
rates had little impact on the time to transmit track data.
Additionally, as the number of track-collaboration requests
increased, the number of normal tracks dropped to zero and
collaboratively-fused tracks increased, but the impact to the
overall average track-process time is insignificant. As to be
expected, increases in module-processing time, track-list-
comparison times, and track-fusion times all had corre-
sponding increases to the average track processing and
throughput values. (Reader can refer to [5] for the detail
data tables and line graphs.)

5 Discussions and Conclusions

In a field of study that is not well defined such as ballistic
missile defense and which consists of systems of systems,
one must discover and develop methodologies for refining
requirements and ensuring a project’s purpose is success-
fully accomplished. The Use Case-Model-Simulation feed-
back cycle that we used is a systematic engineering meth-
odology for developing such highly complex systems of
systems. Through the use of this methodology, we found it
necessary to redesign the Sensor Fusion Processor’s Track
List capsule (TLC) in order to handle heavier work loads, in
this case more traffic. Figure 13 shows the UML-RT model

of the original design where it uses a single TFC-CFC
Communications capsule to handle all local data streams
received from the Track Fusing capsule and the Collabora-
tive Fusion Capsule, and uses a single Track Registry cap-
sule to maintain the SFP’s master list of all perceived valid
tracks as well as any additional tracks received from the
Sensor Net.

Figure 14 shows the revised design where it uses two cap-
sules (the TFC Communications capsule and CFC Commu-
nications capsule) to handle the local track data. The new
design uses two Track Registry capsules (A and B) working
in tandem to maintains the SFP’s master list of all perceived
valid tracks as well as any additional tracks received from
the Sensor Net, and allows them to communicate with Track
List Receiving capsule directly. Only one Track Registry
capsule is active at a time. The other is in a semi-active
state, in which it is receiving all updates from the Track

Table 11. Varying Master Track List Broadcast Times

Table 12. Varying Data Rate between Capsules

Figure 13. The Original Track List Sub-capsule

<<capsule>>

SFP1TCIC:TFCCFCCommunicationsCapsule

SFP1TLC: TrackListCapsule

<<capsule>>

SFP1TFC: TrackCorrelationCapsule

<<capsule>>

SFP1TRC: TrackRegistryCapsule

<<capsule>>

SFP1TLRC: TrackListReceivingCapsule

(fused track data)

(track data)

Figure 14. The Modified Track List Sub-capsule

<<capsule>>

SFP1TIC
:TFCCommunicationsCapsule

SFP1TLC: TrackListCapsule

<<capsule>>

SFP1TFC: TrackCorrelationCapsule

<<capsule>>

SFP1TRCA: TrackRegistryCapsule

<<capsule>>

SFP1TLRC: TrackListReceivingCapsule

(fused track data)

(track data)

<<capsule>>

SFP1TRCB: TrackRegistryCapsule

<<capsule>>

SFP1CIC
:CFCCommunicationsCapsule

(fused track data)

Correlation capsule but its data is not being used by the
Track Correlation capsule until it receives a copy of the
master track list from the Track List Receiving capsule that
is newer than the one held by its active counterpart. When
that happens, it goes active and directs the other active cap-
sule to go into semi-active mode.

Based on the results of the simulation with the redesigned
TLC, we conclude that the redesign is not sufficient, and
that a redesign of the Sensor Fusion Processor as a whole,
which would probably place a slave TLC off of the master
TLC local to each of the fusing capsules, would be required
to reduce the load on the Track List capsule and prevent the
system from bottlenecking there. This type of feedback-
refinement loop is key to ensuring success in the develop-
ment of any complex system.

We found that the use cases feed directly into the UML-RT
models, which in turn flow directly into the OMNeT++
simulation. OMNeT++, being an open-source project, is
rapidly becoming a popular simulation platform in the sci-
entific community as well as in industrial settings. In addi-
tion to its rich set of tools for the construction, execution,
and analysis of discrete-event simulations, there is a rapidly
growing library of reusable models and code for rapid con-
struction of simulations. The mappings between the cap-
sules, ports and connectors of the UML-RT model and the
modules, gates, and connections of the OMNeT++ models
are straight forward and can be easily automated with a
simple translation tool.

Acknowledgements and Disclaimer
The research reported in this article was funded by a grant
from the U.S. Missile Defense Agency. The views and con-
clusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or im-
plied, of the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright annotations
thereon.

References

[1] Caffall, D. S. and Michael, J. B. A New Paradigm for Re-
quirements Specification and Analysis of System-of-Systems.
In Wirsing, M., Balsamo, S. and Knapp, A., eds. Lecture
Notes in Computer Science, no. 2941 (Proc. Monterey Work-
shop 2002: Radical Innovations of Software and System En-
gineering in the Future), Berlin: Springer-Verlag, 2004.

[2] Caffall, D. S. Conceptual Framework Approach for System-
of-Systems Software Developments. Master’s thesis, Naval
Postgraduate School, Monterey, Calif., Mar. 2003.

[3] HIPO – A Design Aid and Documentation Technique. Re-
port no. GC20-1851-0, IBM Corp., White Plains, N.Y.,
1974.

[4] Michael, J. B., Pace, P., Shing, M. T., Tummala, M., Babbitt,
J., Miklaski, M., and Weller, D. Test and Evaluation of the
Ballistic Missile Defense System: FY 03 Progress Report.
Tech. Report NPS-CS-03-007, Naval Postgraduate School,
Monterey, Calif., Sept. 2003.

[5] Miklaski, M. H. and Babbitt, J. D. A Methodology for De-
veloping Timing Constraints for the Ballistic Missile Defense
System. Master’s thesis, Naval Postgraduate School, Mon-
terey, Calif., Dec. 2003.

[6] Object Management Group. OMG Unified Modeling Lan-
guage (UML) Specification 1.5, March 2003.
http://www.omg.org/technology/documents/formal/uml.htm

[7] Savino-Vazquez, N.-N. and Ruigjaner, R. A UML-based
method to specify the structural component of simulation-
based queuing network performance models. In Proc.
Thirty-second Annual Simulation Symposium, IEEE (San
Diego, Calif., Apr. 1999), pp. 71-78.

[8] Selic, B. and Rumbaugh, J. Using UML for Modeling Com-
plex Real-Time Systems. Unpublished white paper, Apr. 4,
1998, http://www.rational.com/media/whitepapers/umlrt.pdf.

[9] Selic, B., Gullekson, G., and Ward, P. Real-Time Object
Oriented modeling. New York: John Wiley & Sons, 1994.

[10] Speirs, N. A. and Arief, L. B. Simulation of a telecommuni-
cation system using SimML. In Proc. Thirty-third Annual
Simulation Symposium, IEEE (Washington, D.C., Apr.
2000), pp. 131-138.

[11] Varga, A. OMNeT++ Discrete Simulation System (Version
2.3) User Manual, Technical University of Budapest, Dept.
of Telecommunications (BME-HIT), Hungary, Mar. 2002.

[12] Vestal, S. MetaH User’s Guide. Honeywell Technology
Center, Minneapolis, Minn., www.htc.honeywell.com/metah.

